

Public Products List

Publict Products are off the shelf products. They are not dedicated to specific customers, they are available through ST Sales team, or Distributors, and visible on ST.com

PCN Title: BOM Changes (LF plating and DA) on VIPER products (TFME subcon as assy plant).

PCN Reference: AMS/22/13129

Subject: Public Products List

Dear Customer,

Please find below the Standard Public Products List impacted by the change.

VIPER26LN	VIPER17HN	VIPER26HN
VIPER06XN	VIPER27HN	VIPER16LN
VIPER06LN	VIPER17LN	VIPER27LN
VIPER06HN	VIPER16HN	VIPER28HN
VIPER28LN		

IMPORTANT NOTICE - PLEASE READ CAREFULLY

Subject to any contractual arrangement in force with you or to any industry standard implemented by us, STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics - All rights reserved

Reliability Report

General Information			
Product Line	MT13 (UA68+VZ81)		
Product Description Package	Off-line Converter DIP7		
Silicon Technology	BCD6 (UA68) Supermesh (VZ81)		

Traceability				
Diffusion Plant	Catania Ang Mo Kio (Singapore)			
Assembly Plant	TFME			
Reliability Assessment				
Pass 🗵				
Fail				

Note: this report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the electronic device conformance to its specific mission profile. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics or under the approval of the author (see below).

Version	Content description	Date	Author	Function
1.0	Initial Revision	05-Mar-21	P. Teruzzi/G. Capodici	Reliability Engineer

APPROVED BY:

Function	Location	Name
Division Reliability Manager	Italy	A. Paratore
Division Quality Manager	Italy	A. Platini

Table of Contents

1	RELI/	ABILIT	Y EVALUATION OVERVIEW	3
	1.1	OBIEC	TIVE	3
	1.2		bility Strategy	
	1.3		CLUSION	
2	PROI		OR TEST VEHICLE CHARACTERISTICS	
_	2.1		RALITIES	
	2.2		ONNECTION	
	2.3		K DIAGRAM	
	2.4		DING DIAGRAM	
	2.5		AGE OUTLINE / MECHANICAL DATA	
	2.6		EABILITY	
		6.1	Wafer fab information	
	2.	6.2	Assembly information	8
	2.	6.3	Reliability information	9
3	TEST	S RESU	ULTS SUMMARY	.10
	3.1		NFORMATION	
	3.2	TEST I	PLAN AND RESULTS SUMMARY	11
4	APPL	ICABL	E AND REFERENCE DOCUMENTS	.14
5	GLOS	SARY		15

1 RELIABILITY EVALUATION OVERVIEW

1.1 Objective

MT13 is an already qualified device. This report contains the reliability evaluation of MT13 device diffused in Catania/Ang Mo Kio and assembled in Dip7 in TFME, in the overall plan of 8200T Glue and DIP7LM(S-Ag) with Cu Ring lead frame qualification including also other test vehicle.

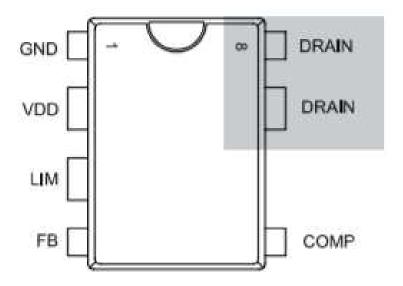
1.2 Reliability Strategy

Reliability trials performed as part of this reliability evaluation are in agreement with **ST 0061692** specification and are listed in below Test Plan. For details on test conditions, generic data used and specifications references, refer to test results summary in section 3.

1.3 Conclusion

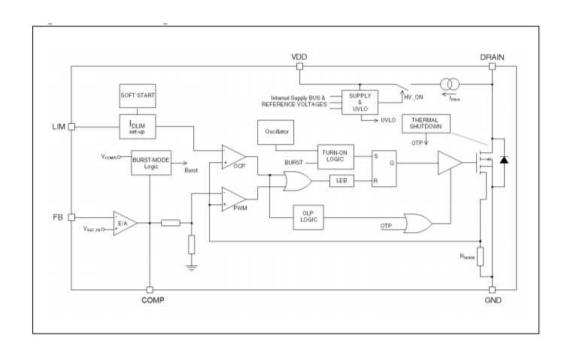
All reliability tests have been completed with positive results. Neither functional nor parametric rejects were detected at final electrical testing.

Based on the overall results obtained, MT13 device diffused in Catania/Ang Mo Kio and assembled in Dip7 in TFME, has positively passed reliability evaluation.

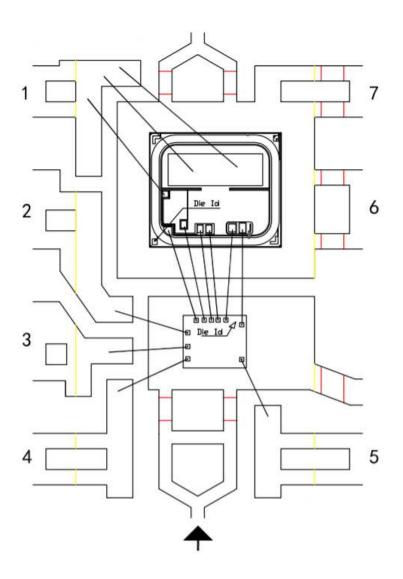


2 PRODUCT OR TEST VEHICLE CHARACTERISTICS

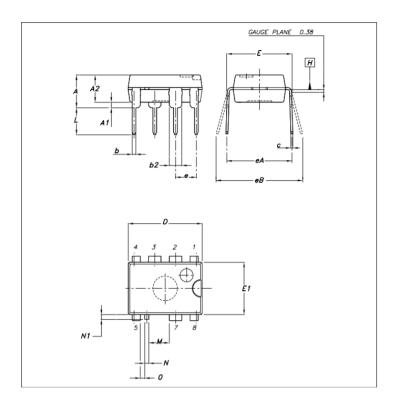
2.1 Generalities


The device is an off-line converter with an 800 V avalanche ruggedness power section, a PWM controller, user defined overcurrent limit, protection against feedback network disconnection, hysteretic thermal protection, soft start up and safe auto restart after any fault condition.

2.2 Pin connection



2.3 Block diagram



2.4 Bonding diagram

2.5 Package Outline / Mechanical data

D:		mm	
Dim.	Тур	Min	Max
Α			5.33
A1		0.38	
A2	3.30	2.92	4.95
b	0.46	0.36	0.56
b2	1.52	1.14	1.78
С	0.25	0.20	0.36
D	9.27	9.02	10.16
E E1 e	7.87	7.62	8.26
	6.35	6.10	7.11
	2.54		
	7.62		
eB			10.92
L	3.30	2.92	3.81
M	2.508		
N	0.50	0.40	0.60
N1			0.60
0	0.548		

2.6 Traceability

2.6.1 Wafer fab information

Table 1

Wafer fab information		
UA68		
Wafer fab name / location	CATANIA	
Wafer diameter (inches)	8	
Die thickness (µm)	375	
Silicon process technology	BCD6	
Die finishing front side (passivation)	TEOS/SiN/Polymide	
Die finishing back side	RAW SILICON SINGLE GRIND	
Die area (X,Y) (µm)	1320,1112	
Metal levels	3	
Bond Pad Material	Ti/AlCu/TiNARC	

Table 2

14010 =			
Wafer fab information			
VZ81			
Wafer fab name / location	Ang Mo Kio - Singapore		
Wafer diameter (inches)	6		
Die thickness (µm)	280		
Silicon process technology	Supermesh		
Die finishing front side (passivation)	SiN (nitride)		
Die finishing back side	Ti/Ni/Au		
Die area (X,Y) (µm)	2650,2320		
Metal levels	1		
Bond Pad Material	AlSi		

2.6.2 Assembly information

Table 3

Assembly Information			
DIP7			
Assembly plant name	TFME		
Lead frame finishing (material)	DIP7LM Cu Ring		
Die attach material	ABLEBOND 8200T		
Wire bonding material/diameter	D1.0 AU WIRE		
Molding compound material	EMG-400-1F (HHCK)		

2.6.3 Reliability information

Table 4

Reliability Information		
Reliability laboratory name / location	Agrate-Cornaredo / Italy (lot 1,2,3,7)	
Renability laboratory fidfile / location	Muar / Malaysia (lot 4,5,6)	

Note: ST is ISO 9001 certified. This induces certification of all internal and subcontractor labs. ST certification document can be downloaded under the following link: http://www.st.com/content/st_com/en/support/quality-and-reliability/certifications.html

3 TESTS RESULTS SUMMARY

3.1 Lot Information

Table 5

Lot #	Diffusion Lot	Die Revision (Cut)	Raw Line	Package	Note
1	V584258M	BE6	FEJG*MV61BE6	DIP7	Equivalent Test vehicle
2	V5840WY9	BG6	RFJG*MV34BG6	DIP7	Equivalent Test vehicle
3	V5819UU6	AEX	FU(E*MT19AEX	SDIP10	Equivalent Test vehicle
4	V5009H09	AC6	1UJG*MT13AC6	DIP7	
5	V50121WF	BE6	1UJG*MV61BE6	DIP7	Equivalent Test vehicle
6	V5017W75	BG6	1UJG*MV34BG6	DIP7	Equivalent Test vehicle
7	KYA938	AA5	A5(E*MT13AA5	DIP7	Equivalent Test vehicle

3.2 Test plan and results summary

<u>Table 6</u> – ACCELERATED LIFETIME SIMULATION TESTS

Test code	Stress method	Stress Conditions	Lots	S.S.	Total	Results/Lot Fail/S.S.	Comments: (N/A =Not Applicable)
HTOL		VCC=23V TJ=150°C Duration= 1000hrs □ After PC ☑ Testing at Room	3	45	135	Lot 1: 0 / 45 Lot 2: 0 / 45 Lot 3: 0 / 45	
HTRB		VDRAIN=640V VCC=23V TJ=150°C Duration= 1000hrs □ After PC ⊠ Testing at Room	3	45	135	Lot 1: 0 / 45 Lot 2: 0 / 45 Lot 3: 0 / 45	

Table 7 - ACCELERATED ENVIRONMENT STRESS TESTS

Test code	Stress method	Stress Conditions	Lots	S.S.	Total	Results/Lot Fail/S.S.	Comments: (N/A =Not Applicable)
THB	JESD22 A101	VDRAIN=100V VCC=23V Ta=85°C, 85%RH, Duration= 1000hrs	2	40	80	Lot 1: 0 / 40 Lot 2: 0 / 40	
		☐ After PC ☑ Testing at Room	1	25	25	Lot 3: 0 / 25	
TC	JESD22-A104	Ta= Duration= 500cy □ After PC	3	25	75	Lot 1: 0 / 25 Lot 2: 0 / 25 Lot 3: 0 / 25	
		□ Testing at Room	1	77	77	Lot 4: 0 / 77 Lot 5: 0 / 77 Lot 6: 0 / 77	
AC	JESD22 A102	P=2.08atm Ta=121°C, Duration = 96hrs ☐ After PC ☑ Testing at Room	3	25	75	Lot 1: 0 / 25 Lot 2: 0 / 25 Lot 3: 0 / 25	
HTSL	JESD22 A103	Ta= 150°C Duration= 1000hrs □ After PC ☑ Testing at Room	3	25	75	Lot 1: 0 / 25 Lot 2: 0 / 25 Lot 3: 0 / 25	

Table 8 - ELECTRICAL VERIFICATION TESTS

Test code	Stress method	Stress Conditions	Lots	s.s.	Total	Results Fail/S.S.	Comments: (N/A =Not Applicable)
CDM	ANSI/ESD STM	CDM=+/-1500V ⊠ Testing at Room	1	3	3	Lot 7 :0 / 3	
MM	EIA/JESD22-A115	MM=+/-200V ⊠ Testing at Room	1	3	3	Lot 7 :0 / 3	
НВМ	ANSI/ESDA/JEDEC	HBM=+/-4000V ⊠ Testing at Room	1	3	3	Lot 7 :0 / 3	
LU	JESD78	Current Injection Class II - Level B (+/- 100mA) Overvoltage Class II - Level B (1,5 x Vmax) □ Testing at Room	1	6	6	Lot 7:0/6	

4 APPLICABLE AND REFERENCE DOCUMENTS

Reference	Short description
AEC-Q100	Failure Mechanism Based Stress Test Qualification for Integrated Circuits in automotive applications
JESD47	Stress-Test-Driven Qualification of Integrated Circuits
DMS 0061692	Reliability Tests and Criteria for Product Qualification

5 **GLOSSARY**

List update based on applicable items.

AC	Autoclave	MR	Multiple Reflow
ACBV	AC Blocking Voltage	MS	Mechanical Shock
ASER	Accelerated Soft Error Rate	MSeq	Mechanical sequence
AST	Adhesion Shear Test	MSL	Moisture Sensitivity Level
BI	Burn-In	NVM	Non Volatile Memory
ВТЗР	Board 3 points Bending Test	PC	Preconditioning
BT4P	Board 4 points Bending Test	PD	Physical Dimensions
CA	Constant Acceleration	PTC	Power Temperature Cycling
CDM	Electrostatic Discharge - Charged Device Model	RS	Repetitive Surge Test
ConA	Construction Analysis	TSH	Resistance to Solder Heat
CVS	Constant Voltage Stress	RTSER	Real-Time Soft Error Rate
DBT	Dead Bug Test	SAM	Scanning Acoustic Microscopy
DPA	Destructive Physical Analysis	SBP	Solder Ball Pull
DROP	Package drop	SBS	Solder Ball Shear
DS	Die Shear	SC	Short Circuit Characterization
DToB	Drop Test on Board	SCCSS	Smartcard - Constant Supply Stress
EDR	NVM Program/Erase Endurance & Data Retention Stress Test	SCMCMS	Smartcard - MasterCard Mechanical Stress
ELFR	Early Life Failure Rate	SCMF	Smartcard - Magnetic Field Stress
EMC	Electromagnetic Compatibility	SCPOOS	Smartcard - Power Off/On Stress
EOS	Electrical Overstress characterization	SCRFC	Smartcard - RF On/Off Cyclic Stress
ESeq	Environmental sequence	SCRFS	Smartcard - RF On Static Stress
EV	External Visual	ScrT	Screw Test
GFF		SCSA	Smartcard - Salt Atmosphere
GFL	Gross/Fine Leak	SCUV	Smartcard - UV Test
GL	Electro-thermally Induced Gate Leakage	SCXRAY	Smartcard - XRAY Test
GStress	Gate Stress	SD	Solderability
GUN	Electrostatic Discharge – System Level Test	SSOP	Steady State Operational
H3TRB	High Humidity High Temperature Reverse Bias	SToB	Shock Test on Board
HAST	Biased HAST (Highly Accelerated Stress Test)	TC	Temperature Cycling
НВМ	Electrostatic Discharge – Human Body Model	TCDT	Temperature Cycling Delamination Test
HER	Hermeticity	TCHT	Temperature Cycling Hot Test
HMM	Electrostatic Discharge – Human Metal Model	TCoB	Temperature Cycling on Board
HTFB	High Temperature Forward Bias	THB	Temperature Humidity Bias
HTGB	High Temperature Gate Bias	THS	Temperature Humidity Storage
НТННВ	High Temperature High Humidity Bias	TLP	Electrostatic Discharge - Transmission Line Pulse
HTOL	High Temperature Operating Life	TS	Thermal Shocks
HTRB	High Temperature Reverse Bias.	TStr	Terminal Strength
HTSL	High Temperature Storage Life	Tumb	Tumbler Test
IOL	Intermittent Operating Life	UHAST	Unbiased HAST (Highly Accelerated Stress Test)
IWV	Internal Water Vapor	VToB	Vibration Test on Board
LF	Lead Free	VFV	Variable Frequency Vibration
LI	Lead Integrity	WAT	Tin (Sn) Whisker Acceptance Testing
LT	Lid Torque	WBI	Wire Bond Integrity
LTOL	Low Temperature Operating Life	WBP	Wire Bond Pull
LTSL	Low Temperature Storage Life	WBS	Wire Bond Shear
LU	Latch-Up	WBSt	Wire Bond Strength
ММ	Electrostatic Discharge – Machine model	XRAY	X ray inspection

CONFIDENTIALITY OBLIGATIONS

This document contains confidential information; its distribution is submitted to ST authorization.

Disclosure of this document to any non-authorized party must be previously authorized by ST only under the provision of a signed NDA between ST and Customer and must be treat as strictly confidential.

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

Information in this document is intended as support for authorized communication between ST and Customer only, for internal discussions purposes.

In no event the information disclosed by ST to Customer hereunder can be used against ST, or in a claim brought in front of any Court or Jurisdiction.

At all times you will comply with the following securities rules:

- · Do not copy or reproduce all or part of this document
- Keep this document locked away
- Further copies can be provided on a "need to know basis", Please contact your local ST Sales Office or document writer

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics International NV and/or its affiliates, registered in the U.S. and other countries

© 2018 STMicroelectronics International NV and/or its affiliates – All Rights Reserved www.st.com

Reliability Report

General Information

Product Line MV34 (UL39 + VZ8Q)

Product Description Off-line Converter

Package DIP7

Silicon Technology BCD6 (UL39)

Supermesh (VZ8Q)

Traceability			
Diffusion Plant	Catania Ang Mo Kio (Singapore)		
Assembly Plant	TFME		
Reliabi	lity Assessment		
Pass			
Fail			

Note: this report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the electronic device conformance to its specific mission profile. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics or under the approval of the author (see below).

Version	Content description	Date	Author	Function
1.0	Initial Revision	05-Mar-21	P. Teruzzi/G. Capodici	Reliability Engineer

APPROVED BY:

Function	Location	Name
Division Reliability Manager	Italy	A. Paratore
Division Quality Manager	Italy	A. Platini

- ST Restricted -

Quality & Reliability - AMS GroupReliability Evaluation Report

Table of Contents

-1	RELIA	ABILITY EVALUATION OVERVIEW	3
	1.1	OBJECTIVE	
	1.2	RELIABILITY STRATEGY	
	1.3	Conclusion	
2	PROD	DUCT OR TEST VEHICLE CHARACTERISTICS	
	2.1	Generalities	
	2.2	PIN CONNECTION	
	2.3	BLOCK DIAGRAM	
	2.4	Bonding diagram	
	2.5	PACKAGE OUTLINE / MECHANICAL DATA	7
	2.6	Traceability	
	2.	.6.1 Wafer fab information	8
	2.	.6.2 Assembly information	8
	2.	.6.3 Reliability information	
3	TEST	S RESULTS SUMMARY	10
	3.1	LOT INFORMATION	. 10
	3.2	TEST PLAN AND RESULTS SUMMARY	. 11
4	APPL	ICABLE AND REFERENCE DOCUMENTS	14
5	CLOS	SCARY	15

1 RELIABILITY EVALUATION OVERVIEW

1.1 Objective

MV34 is an already qualified device. This report contains the reliability evaluation of MV34 device diffused in Catania/Ang Mo Kio and assembled in DIP7 in TFME, in the overall plan of 8200T glue and DIP7LM(S-Ag) with Cu Ring lead frame qualification including also other test vehicle.

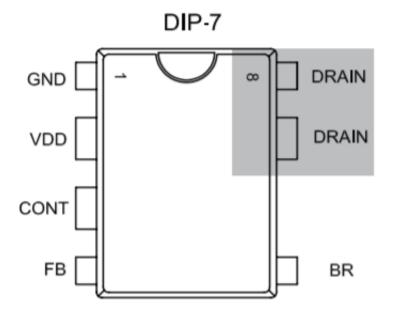
1.2 Reliability Strategy

Reliability trials performed as part of this reliability evaluation are in agreement with **ST 0061692** specification and are listed in below Test Plan. For details on test conditions, generic data used and specifications references, refer to test results summary in section 3.

1.3 Conclusion

All reliability tests have been completed with positive results. Neither functional nor parametric rejects were detected at final electrical testing.

Based on the overall results obtained, MV34 device diffused in Catania/Ang Mo Kio and assembled in Dip7 in TFME, has positively passed reliability evaluation.

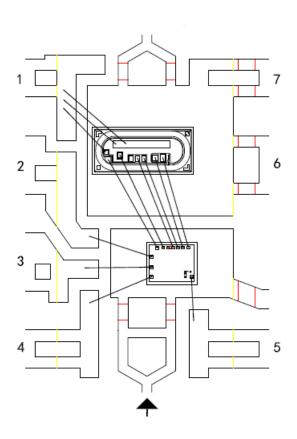


2 PRODUCT OR TEST VEHICLE CHARACTERISTICS

2.1 Generalities

The device is an off-line converter with an 800 V rugged power section, a PWM control, two levels of overcurrent protection, overvoltage and overload protections, hysteresis thermal protection, soft-start and safe auto-restart after any fault condition removal.

2.2 Pin connection



2.3 Block diagram



2.4 Bonding diagram

2.5 Package Outline / Mechanical data

Dim.		mm		
	Min.	Тур.	Max.	Notes
Α			5.33	
A1	0.38			
A2	2.92	3.30	4.95	
b	0.36	0.46	0.56	
b2	1.14	1.52	1.78	
С	0.20	0.25	0.36	
D	9.02	9.27	10.16	
E	7.62	7.87	8.26	
E1	6.10	6.35	7.11	
е		2.54		
eA		7.62		
eB			10.92	
L	2.92	3.30	3.81	
M ⁽¹⁾⁽²⁾		2.508		6 - 8
N	0.40	0.50	0.60	
N1			0.60	
O ⁽²⁾⁽³⁾		0.548		7 - 8

2.6 Traceability

2.6.1 Wafer fab information

Table 1

Wafer fab information	Wafer fab information		
UL39	UL39		
Wafer fab name / location	CATANIA		
Wafer diameter (inches)	8		
Die thickness (µm)	375		
Silicon process technology	BCD6		
Die finishing front side (passivation)	TEOS/SiN/Polymide		
Die finishing back side	RAW SILICON SINGLE GRIND		
Die area (X,Y) (µm)	1320,1112		
Metal levels	3		
Bond Pad Material	Ti/AlCu/TiNARC		

Table 2

Table E			
Wafer fab information	Wafer fab information		
VZ8Q			
Wafer fab name / location	Ang Mo Kio – Singapore		
Wafer diameter (inches)	6		
Die thickness (µm)	280		
Silicon process technology	Supermesh		
Die finishing front side (passivation)	SiN (nitride)		
Die finishing back side	Ti/Ni/Au		
Die area (X,Y) (µm)	2650,1290		
Metal levels	1		
Bond Pad Material	AlSi		

2.6.2 Assembly information

Table 3

Assembly Information	
DIP7	
Assembly plant name	TFME
Lead frame finishing (material)	DIP7LM Cu Ring
Die attach material	ABLEBOND 8200T
Wire bonding material/diameter	D1.0 AU WIRE
Molding compound material	EMG-400-1F (HHCK)

2.6.3 Reliability information

Table 4

Reliability Information			
Reliability laboratory name / location	Agrate-Cornaredo / Italy (lot 1,2,3)		
	Muar / Malaysia (lot 4,5,6)		

Note: ST is ISO 9001 certified. This induces certification of all internal and subcontractor labs. ST certification document can be downloaded under the following link: http://www.st.com/content/st_com/en/support/quality-and-reliability/certifications.html

RER Identification Number: RR001321CO6410

3 TESTS RESULTS SUMMARY

3.1 Lot Information

Table 5

Lot #	Diffusion Lot	Die Revision (Cut)	Raw Line	Package	Note
1	V5840WY9	BG6	RFJG*MV34BG6	DIP7	DA <i>ABLESTIK 8390S25</i>
2	V584258M	BE6	FEJG*MV61BE6	DIP7	Equivalent Test Vehicle
3	V5819UU6	AEX	FU(E*MT19AEX	SDIP10	Equivalent Test Vehicle
4	V5017W75	BG6	1UJG*MV34BG6	DIP7	
5	V50121WF	BE6	1UJG*MV61BE6	DIP7	Equivalent Test Vehicle
6	V5009H09	AC6	1UJG*MT13AC6	DIP7	Equivalent Test Vehicle

3.2 Test plan and results summary

<u>Table 6</u> – ACCELERATED LIFETIME SIMULATION TESTS

Test code	Stress method	Stress Conditions	Lots	S.S.	Total	Results/Lot Fail/S.S.	Comments: (N/A =Not Applicable)
HTOL		VCC=23V TJ=150°C Duration= 1000hrs □ After PC ☑ Testing at Room	3	45	135	Lot 1: 0 / 45 Lot 2: 0 / 45 Lot 3: 0 / 45	
HTRB		VDRAIN=640V VCC=23V TJ=150°C Duration= 1000hrs □ After PC ☑ Testing at Room	3	45	135	Lot 1: 0 / 45 Lot 2: 0 / 45 Lot 3: 0 / 45	

Table 7 - ACCELERATED ENVIRONMENT STRESS TESTS

Test code	Stress method	Stress Conditions	Lots	s.s.	Total	Results/Lot Fail/S.S.	Comments: (N/A =Not Applicable)
ТНВ	JESD22 A101	VDRAIN=100V VCC=23V Ta=85°C, 85%RH, Duration= 1000hrs □ After PC ⊠ Testing at Room	2	40 25	80 25	Lot 1: 0 / 40 Lot 2: 0 / 40 Lot 3: 0 / 25	
ТС	JESD22-A104	Ta= Duration= 500cy □ After PC ⊠ Testing at Room	3	25 77	75 77	Lot 1: 0 / 25 Lot 2: 0 / 25 Lot 3: 0 / 25 Lot 4: 0 / 77 Lot 5: 0 / 77 Lot 6: 0 / 77	
AC	JESD22 A102	P=2.08atm Ta=121°C, Duration = 96hrs ☐ After PC ☑ Testing at Room	3	25	75	Lot 1: 0 / 25 Lot 2: 0 / 25 Lot 3: 0 / 25	
HTSL	JESD22 A103	Ta= 150°C Duration= 1000hrs □ After PC ☑ Testing at Room	3	25	75	Lot 1: 0 / 25 Lot 2: 0 / 25 Lot 3: 0 / 25	

Table 8 - ELECTRICAL VERIFICATION TESTS

Test code	Stress method	Stress Conditions	Lots	S.S.	Total	Results Fail/S.S.	Comments: (N/A =Not Applicable)
CDM	ANSI/ESDA/JEDEC	CDM=+/-1500V ⊠ Testing at Room	3	3	9	Lot 1: 0 / 3 Lot 2: 0 / 3 Lot 3: 0 / 3	

4 APPLICABLE AND REFERENCE DOCUMENTS

Reference	Short description
AEC-Q100	Failure Mechanism Based Stress Test Qualification for Integrated Circuits in automotive applications
JESD47	Stress-Test-Driven Qualification of Integrated Circuits
DMS 0061692	Reliability Tests and Criteria for Product Qualification

5 **GLOSSARY**

List update based on applicable items.

AC	Autoclave	MR	Multiple Reflow
ACBV	AC Blocking Voltage	MS	Mechanical Shock
ASER	Accelerated Soft Error Rate	MSeq	Mechanical sequence
AST	Adhesion Shear Test	MSL	Moisture Sensitivity Level
BI	Burn-In	NVM	Non Volatile Memory
ВТЗР	Board 3 points Bending Test	PC	Preconditioning
BT4P	Board 4 points Bending Test	PD	Physical Dimensions
CA	Constant Acceleration	PTC	Power Temperature Cycling
CDM	Electrostatic Discharge - Charged Device Model	RS	Repetitive Surge Test
ConA	Construction Analysis	TSH	Resistance to Solder Heat
CVS	Constant Voltage Stress	RTSER	Real-Time Soft Error Rate
DBT	Dead Bug Test	SAM	Scanning Acoustic Microscopy
DPA	Destructive Physical Analysis	SBP	Solder Ball Pull
DROP	Package drop	SBS	Solder Ball Shear
DS	Die Shear	SC	Short Circuit Characterization
DToB	Drop Test on Board	SCCSS	Smartcard - Constant Supply Stress
EDR	NVM Program/Erase Endurance & Data Retention Stress Test	SCMCMS	Smartcard – MasterCard Mechanical Stress
ELFR	Early Life Failure Rate	SCMF	Smartcard - Magnetic Field Stress
EMC	Electromagnetic Compatibility	SCPOOS	Smartcard - Power Off/On Stress
EOS	Electrical Overstress characterization	SCRFC	Smartcard - RF On/Off Cyclic Stress
ESeq	Environmental sequence	SCRFS	Smartcard - RF On Static Stress
EV	External Visual	ScrT	Screw Test
GFF		SCSA	Smartcard - Salt Atmosphere
GFL	Gross/Fine Leak	SCUV	Smartcard - UV Test
GL	Electro-thermally Induced Gate Leakage	SCXRAY	Smartcard - XRAY Test
GStress	Gate Stress	SD	Solderability
GUN	Electrostatic Discharge – System Level Test	SSOP	Steady State Operational
H3TRB	High Humidity High Temperature Reverse Bias	SToB	Shock Test on Board
HAST	Biased HAST (Highly Accelerated Stress Test)	TC	Temperature Cycling
HBM	Electrostatic Discharge – Human Body Model	TCDT	Temperature Cycling Delamination Test
HER	Hermeticity	TCHT	Temperature Cycling Hot Test
НММ	Electrostatic Discharge – Human Metal Model	ТСоВ	Temperature Cycling on Board
HTFB	High Temperature Forward Bias	THB	Temperature Humidity Bias
HTGB	High Temperature Gate Bias	THS	Temperature Humidity Storage
НТННВ	High Temperature High Humidity Bias	TLP	Electrostatic Discharge - Transmission Line Pulse
HTOL	High Temperature Operating Life	TS	Thermal Shocks
HTRB	High Temperature Reverse Bias.	TStr	Terminal Strength
HTSL	High Temperature Storage Life	Tumb	Tumbler Test
IOL	Intermittent Operating Life	UHAST	Unbiased HAST (Highly Accelerated Stress Test)
IWV	Internal Water Vapor	VToB	Vibration Test on Board
LF	Lead Free	VFV	Variable Frequency Vibration
LI	Lead Integrity	WAT	Tin (Sn) Whisker Acceptance Testing
LT	Lid Torque	WBI	Wire Bond Integrity
LTOL	Low Temperature Operating Life	WBP	Wire Bond Pull
LTSL	Low Temperature Storage Life	WBS	Wire Bond Shear
LU	Latch-Up	WBSt	Wire Bond Strength
ММ	Electrostatic Discharge – Machine model	XRAY	X ray inspection

CONFIDENTIALITY OBLIGATIONS

This document contains confidential information; its distribution is submitted to ST authorization.

Disclosure of this document to any non-authorized party must be previously authorized by ST only under the provision of a signed NDA between ST and Customer and must be treat as strictly confidential.

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

Information in this document is intended as support for authorized communication between ST and Customer only, for internal discussions purposes.

In no event the information disclosed by ST to Customer hereunder can be used against ST, or in a claim brought in front of any Court or Jurisdiction.

At all times you will comply with the following securities rules:

- Do not copy or reproduce all or part of this document
- Keep this document locked away
- Further copies can be provided on a "need to know basis", Please contact your local ST Sales Office or document writer

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics International NV and/or its affiliates, registered in the U.S. and other countries

© 2018 STMicroelectronics International NV and/or its affiliates – All Rights Reserved www.st.com

Reliability Report

General Information

Product Line MV61 (UP40+VL8Q)

Product Description Off-line Converter

Package DIP7

Silicon Technology BCD6 (UP40)

Supermesh (VL8Q)

Т	raceability
Diffusion Plant	Catania Ang Mo Kio (Singapore)
Assembly Plant	TFME
Reliabi	ility Assessment
Pass	
Fail	

Note: this report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the electronic device conformance to its specific mission profile. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics or under the approval of the author (see below).

Version	Content description	Date	Author	Function
1.0	Initial Revision	05-Mar-21	P. Teruzzi/G. Capodici	Reliability Engineer

APPROVED BY:

Function	Location	Name
Division Reliability Manager	Italy	A. Paratore
Division Quality Manager	Italy	A. Platini

- ST Restricted -

Quality & Reliability - AMS GroupReliability Evaluation Report

Table of Contents

- 1	RELIA	ABILITY EVALUATION OVERVIEW	3
	1.1	Objective	
	1.2	RELIABILITY STRATEGY	
	1.3	Conclusion	
2	PROD	DUCT OR TEST VEHICLE CHARACTERISTICS	
	2.1	Generalities	
	2.2	PIN CONNECTION	
	2.3	BLOCK DIAGRAM	
	2.4	Bonding diagram	
	2.5	PACKAGE OUTLINE / MECHANICAL DATA	
	2.6	Traceability	
	2.	.6.1 Wafer fab information	8
	2.	.6.2 Assembly information	8
	2.	.6.3 Reliability information	
3	TEST	S RESULTS SUMMARY	10
	3.1	LOT INFORMATION	. 10
	3.2	TEST PLAN AND RESULTS SUMMARY	. 11
4	APPL	ICABLE AND REFERENCE DOCUMENTS	14
5	CLOS	SCARY	1.5

1 RELIABILITY EVALUATION OVERVIEW

1.1 Objective

MV61 is an already qualified device. This report contains the reliability evaluation of MV61 device diffused in Catania/Ang Mo Kio and assembled in Dip7 in TFME, in the overall plan of 8200T Glue and DIP7LM(S-Ag) with Cu Ring lead frame qualification including also other test vehicle.

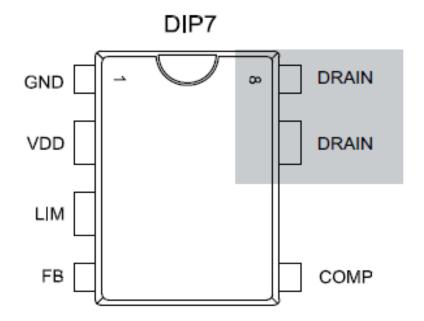
1.2 Reliability Strategy

Reliability trials performed as part of this reliability evaluation are in agreement with **ST 0061692** specification and are listed in below Test Plan. For details on test conditions, generic data used and specifications references, refer to test results summary in section 3.

1.3 Conclusion

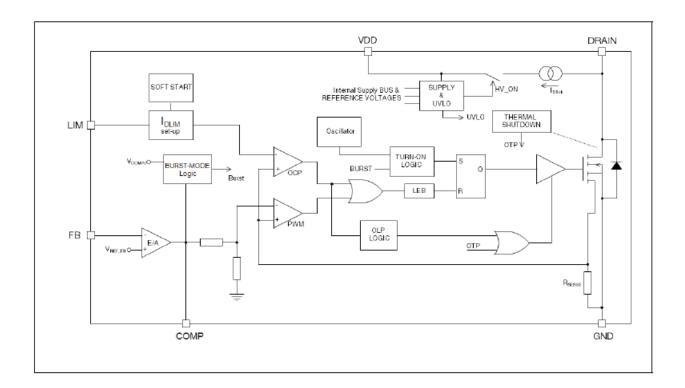
All reliability tests have been completed with positive results. Neither functional nor parametric rejects were detected at final electrical testing.

Based on the overall results obtained, MV61 device diffused in Catania/Ang Mo Kio and assembled in Dip7 in TFME, has positively passed reliability evaluation.

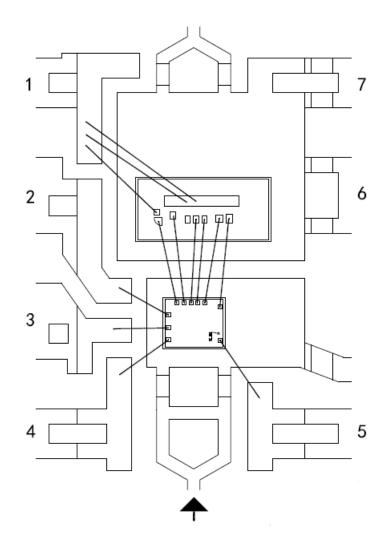


2 PRODUCT OR TEST VEHICLE CHARACTERISTICS

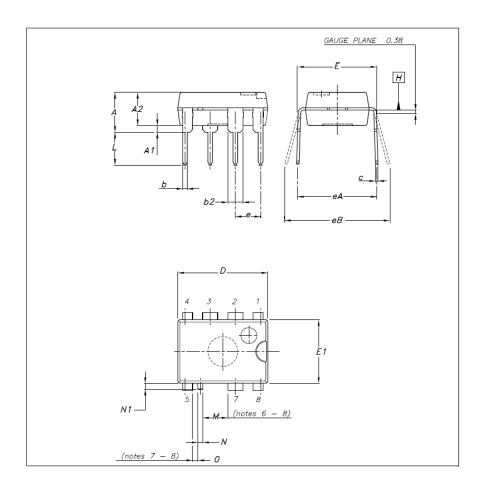
2.1 Generalities


The device is an off-line converter with an 800 V avalanche ruggedness power section, a PWM controller, user defined overcurrent limit, protection against feedback network disconnection, hysteretic thermal protection, soft start up and safe auto restart after any fault condition.

2.2 Pin connection



2.3 Block diagram



2.4 Bonding diagram

2.5 Package Outline / Mechanical data

Di		mm	
Dim.	Тур	Min	Max
А			5,33
A1		0,38	
A2	3,30	2,92	4,95
b	0,46	0,36	0,56
b2	1,52	1,14	1,78
С	0,25	0,20	0,36
D	9,27	9,02	10,16
E	7,87	7,62	8,26
E1	6,35	6,10	7,11
е	2,54		
eA	7,62		
eB			10,92
L	3,30	2,92	3,81
M ⁽⁶⁾⁽⁸⁾	2,508		
N	0,50	0,40	0,60
N1			0,60
O (7)(8)	0,548		

2.6 Traceability

2.6.1 Wafer fab information

Table 1

Wafer fab information					
UP40					
Wafer fab name / location	CATANIA				
Wafer diameter (inches)	8				
Die thickness (µm)	375				
Silicon process technology	BCD6				
Die finishing front side (passivation)	TEOS/SiN/Polymide				
Die finishing back side	RAW SILICON SINGLE GRIND				
Die area (X,Y) (µm)	1320,1112				
Metal levels	3				
Bond Pad Material	Ti/AlCu/TiNARC				

Table 2

Wafer fab information					
VL8Q					
Wafer fab name / location	Ang Mo Kio – Singapore				
Wafer diameter (inches)	6				
Die thickness (µm)	280				
Silicon process technology	Supermesh				
Die finishing front side (passivation)	SiN (nitride)				
Die finishing back side	Ti/Ni/Au				
Die area (X,Y) (µm)	2650,1290				
Metal levels	1				
Bond Pad Material	AlSi				

2.6.2 Assembly information

Table 3

Assembly Information					
DIP7					
Assembly plant name	TFME				
Lead frame finishing (material)	DIP7LM Cu Ring				
Die attach material	ABLEBOND 8200T				
Wire bonding material/diameter	D1.0 AU WIRE				
Molding compound material	EMG-400-1F (HHCK)				

2.6.3 Reliability information

Table 4

Reliability Information	
Reliability laboratory name / location	Agrate-Cornaredo / Italy (lot 1,2,3)
Reliability laboratory flame / location	Muar / Malaysia (lot 4,5,6)

<u>Note:</u> ST is ISO 9001 certified. This induces certification of all internal and subcontractor labs. ST certification document can be downloaded under the following link: http://www.st.com/content/st_com/en/support/quality-and-reliability/certifications.html

3 TESTS RESULTS SUMMARY

3.1 Lot Information

Table 5

Lot #	Diffusion Lot	Die Revision (Cut)	Raw Line	Package	Note
1	V584258M	BE6	FEJG*MV61BE6	DIP7	DA ABLESTIK 8390S25
2	V5840WY9	BG6	RFJG*MV34BG6	DIP7	Equivalent Test Vehicle
3	V5819UU6	AEX	FU(E*MT19AEX	SDIP10	Equivalent Test Vehicle
4	V50121WF	BE6	1UJG*MV61BE6	DIP7	
5	V5017W75	BG6	1UJG*MV34BG6	DIP7	Equivalent Test Vehicle
6	V5009H09	AC6	1UJG*MT13AC6	DIP7	Equivalent Test Vehicle

3.2 Test plan and results summary

Table 6 – ACCELERATED LIFETIME SIMULATION TESTS

Test code	Stress method	Stress Conditions	Lots	S.S.	Total	Results/Lot Fail/S.S.	Comments: (N/A =Not Applicable)
HTOL		VCC=23V TJ=150°C Duration= 1000hrs □ After PC ☑ Testing at Room	3	45	135	Lot 1: 0 / 45 Lot 2: 0 / 45 Lot 3: 0 / 45	
HTRB		VDRAIN=640V VCC=23V TJ=150°C Duration= 1000hrs □ After PC ☑ Testing at Room	2	45	135	Lot 1: 0 / 45 Lot 2: 0 / 45 Lot 3: 0 / 45	

Note: Test method revision reference is the one active at the date of reliability trial execution.

<u>Table 7</u> – ACCELERATED ENVIRONMENT STRESS TESTS

Test code	Stress method	Stress Conditions	Lots	S.S.	Total	Results/Lot Fail/S.S.	Comments: (N/A =Not Applicable)
THB	JESD22 A101	VDRAIN=100V VCC=23V Ta=85°C, 85%RH, Duration= 1000hrs	2	40	80	Lot 1: 0 / 40 Lot 2: 0 / 40	
		□ After PC ☑ Testing at Room	1	25	25	Lot 3: 0 / 25	
TC	JESD22-A104	Ta= Duration= 500cy □ After PC ☑ Testing at Room	3	25 77	75 77	Lot 1: 0 / 25 Lot 2: 0 / 25 Lot 3: 0 / 25 Lot 4: 0 / 77 Lot 5: 0 / 77 Lot 6: 0 / 77	
AC	JESD22 A102	P=2.08atm Ta=121°C, Duration = 96hrs ☐ After PC ☑ Testing at Room	3	25	75	Lot 1: 0 / 25 Lot 2: 0 / 25 Lot 3: 0 / 25	
HTSL	JESD22 A103	Ta= 150°C Duration= 1000hrs □ After PC ☑ Testing at Room	3	25	75	Lot 1: 0 / 25 Lot 2: 0 / 25 Lot 3: 0 / 25	

Note: Test method revision reference is the one active at the date of reliability trial execution.

Table 8 - ELECTRICAL VERIFICATION TESTS

Test code	Stress method	Stress Conditions	Lots	s.s.	Total	Results Fail/S.S.	Comments: (N/A =Not Applicable)
CDM	ANSI/ESDA/JEDEC	CDM=+/-1500V ⊠ Testing at Room	3	3	9	Lot 1:0/3 Lot 2:0/3 Lot 3:0/3	

Note: Test method revision reference is the one active at the date of reliability trial execution.

4 APPLICABLE AND REFERENCE DOCUMENTS

Reference	Short description
AEC-Q100	Failure Mechanism Based Stress Test Qualification for Integrated Circuits in automotive applications
JESD47	Stress-Test-Driven Qualification of Integrated Circuits
DMS 0061692	Reliability Tests and Criteria for Product Qualification

5 **GLOSSARY**

List update based on applicable items.

AC	Autoclave	MR	Multiple Reflow
ACBV	AC Blocking Voltage	MS	Mechanical Shock
ASER	Accelerated Soft Error Rate	MSeq	Mechanical sequence
AST	Adhesion Shear Test	MSL	Moisture Sensitivity Level
BI	Burn-In	NVM	Non Volatile Memory
ВТЗР	Board 3 points Bending Test	PC	Preconditioning
BT4P	Board 4 points Bending Test	PD	Physical Dimensions
CA	Constant Acceleration	PTC	Power Temperature Cycling
CDM	Electrostatic Discharge - Charged Device Model	RS	Repetitive Surge Test
ConA	Construction Analysis	TSH	Resistance to Solder Heat
CVS	Constant Voltage Stress	RTSER	Real-Time Soft Error Rate
DBT	Dead Bug Test	SAM	Scanning Acoustic Microscopy
DPA	Destructive Physical Analysis	SBP	Solder Ball Pull
DROP	Package drop	SBS	Solder Ball Shear
DS	Die Shear	SC	Short Circuit Characterization
DToB	Drop Test on Board	SCCSS	Smartcard - Constant Supply Stress
EDR	NVM Program/Erase Endurance & Data Retention Stress Test	SCMCMS	Smartcard - MasterCard Mechanical Stress
ELFR	Early Life Failure Rate	SCMF	Smartcard - Magnetic Field Stress
EMC	Electromagnetic Compatibility	SCPOOS	Smartcard - Power Off/On Stress
EOS	Electrical Overstress characterization	SCRFC	Smartcard - RF On/Off Cyclic Stress
ESeq	Environmental sequence	SCRFS	Smartcard - RF On Static Stress
EV	External Visual	ScrT	Screw Test
GFF		SCSA	Smartcard - Salt Atmosphere
GFL	Gross/Fine Leak	SCUV	Smartcard - UV Test
GL	Electro-thermally Induced Gate Leakage	SCXRAY	Smartcard - XRAY Test
GStress	Gate Stress	SD	Solderability
GUN	Electrostatic Discharge – System Level Test	SSOP	Steady State Operational
H3TRB	High Humidity High Temperature Reverse Bias	SToB	Shock Test on Board
HAST	Biased HAST (Highly Accelerated Stress Test)	TC	Temperature Cycling
HBM	Electrostatic Discharge – Human Body Model	TCDT	Temperature Cycling Delamination Test
HER	Hermeticity	TCHT	Temperature Cycling Hot Test
НММ	Electrostatic Discharge – Human Metal Model	ТСоВ	Temperature Cycling on Board
HTFB	High Temperature Forward Bias	THB	Temperature Humidity Bias
HTGB	High Temperature Gate Bias	THS	Temperature Humidity Storage
НТННВ	High Temperature High Humidity Bias	TLP	Electrostatic Discharge - Transmission Line Pulse
HTOL	High Temperature Operating Life	TS	Thermal Shocks
HTRB	High Temperature Reverse Bias.	TStr	Terminal Strength
HTSL	High Temperature Storage Life	Tumb	Tumbler Test
IOL	Intermittent Operating Life	UHAST	Unbiased HAST (Highly Accelerated Stress Test)
IWV	Internal Water Vapor	VToB	Vibration Test on Board
LF	Lead Free	VFV	Variable Frequency Vibration
LI	Lead Integrity	WAT	Tin (Sn) Whisker Acceptance Testing
LT	Lid Torque	WBI	Wire Bond Integrity
LTOL	Low Temperature Operating Life	WBP	Wire Bond Pull
LTSL	Low Temperature Storage Life	WBS	Wire Bond Shear
LU	Latch-Up	WBSt	Wire Bond Strength
ММ	Electrostatic Discharge – Machine model	XRAY	X ray inspection

CONFIDENTIALITY OBLIGATIONS

This document contains confidential information; its distribution is submitted to ST authorization.

Disclosure of this document to any non-authorized party must be previously authorized by ST only under the provision of a signed NDA between ST and Customer and must be treat as strictly confidential.

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

Information in this document is intended as support for authorized communication between ST and Customer only, for internal discussions purposes.

In no event the information disclosed by ST to Customer hereunder can be used against ST, or in a claim brought in front of any Court or Jurisdiction.

At all times you will comply with the following securities rules:

- · Do not copy or reproduce all or part of this document
- Keep this document locked away
- Further copies can be provided on a "need to know basis", Please contact your local ST Sales Office or document writer

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics International NV and/or its affiliates, registered in the U.S. and other countries

© 2018 STMicroelectronics International NV and/or its affiliates – All Rights Reserved www.st.com

Reliability Report RR007221CO6410

General Information

Product Line VNB7

Low power OFF-line SMPS

Product Description *primary switcher*

Package DIP8

Silicon Technology VIPower M03

Traceability							
Diffusion Plant	Ang Mo Kio (Singapore)						
Assembly Plant	TFME – FUJITSU						
Reliability Assessment							
Pass							
Fail							

Note: this report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the electronic device conformance to its specific mission profile. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics or under the approval of the author (see below).

Version	Content description	Date	Author	Function	
1.0	Initial Revision	22-Nov-21	P. Teruzzi/G. Capodici	Reliability Engineer	

APPROVED BY:

Function	Location	Name
Division Reliability Manager	Italy	A. Paratore
Division Quality Manager	Italy	A. Platini

Table of Contents

1	RELIA	ABILITY	Y EVALUATION OVERVIEW	3
	1.1	OBJEC.	TIVE	3
	1.2	RELIAE	BILITY STRATEGY	3
	1.3	Conci	LUSION	3
2	PROI	DUCT (OR TEST VEHICLE CHARACTERISTICS	4
	2.1	GENER	RALITIES	4
	2.2	PIN CC	DNNECTION	4
	2.3	Вьоск	CDIAGRAM	5
	2.4	Bondi	ING DIAGRAM	6
	2.5	PACKA	AGE OUTLINE / MECHANICAL DATA	7
	2.6	TRACE	EABILITY	8
	2.	6.1	Wafer fab information	. 8
	2.	6.2	Assembly information	. 8
	2.	6.3	Reliability information	. 9
3	TEST		JLTS SUMMARY	
	3.1	LOT IN	NFORMATION	10
	3.2	TEST P	PLAN AND RESULTS SUMMARY	11
4	APPL	ICABLE	E AND REFERENCE DOCUMENTS	14
5	GLOS	SARY		15

1 RELIABILITY EVALUATION OVERVIEW

1.1 Objective

VNB7 is an already qualified device. This report contains the reliability evaluation of VNB7 device diffused in Ang Mo Kio and assembled in DIP8 in TFME, in the overall plan of 8200T Glue and DIP8 lead frame qualification including also other test vehicle.

1.2 Reliability Strategy

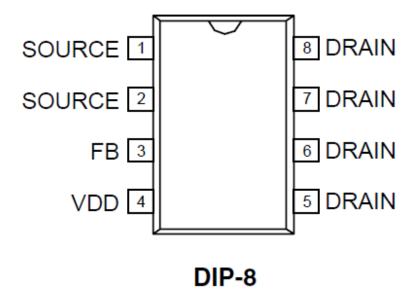
Reliability trials performed as part of this reliability evaluation are in agreement with **ST 0061692** specification and are listed in below Test Plan. For details on test conditions, generic data used and specifications references, refer to test results summary in section 3.

1.3 Conclusion

All reliability tests have been completed with positive results. Neither functional nor parametric rejects were detected at final electrical testing.

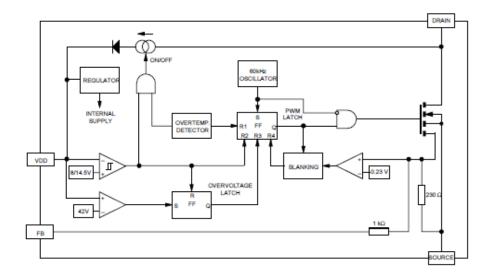
Based on the overall results obtained, VNB7 device diffused in Ang Mo Kio and assembled in DIP8 in TFME-FUJITSU, has positively passed reliability evaluation.

RER Identification Number: RR007221CO6410 Page 3/16

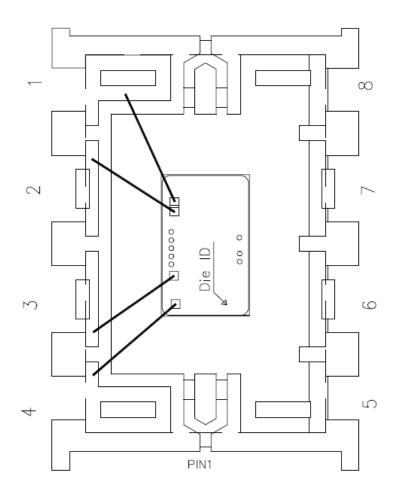


2 PRODUCT OR TEST VEHICLE CHARACTERISTICS

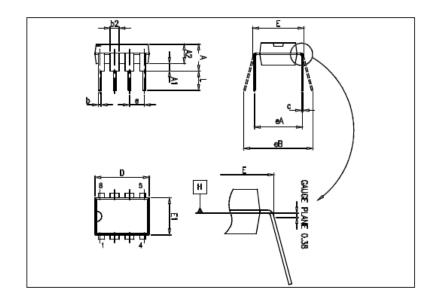
2.1 Generalities


The VIPer22A–E combines a dedicated current mode PWM controller with a high voltage power MOSFET on the same silicon chip. Typical applications cover off line power supplies for battery charger adapters, standby power supplies for TV or monitors, auxiliary supplies for motor control, etc.

2.2 Pin connection



2.3 Block diagram



2.4 Bonding diagram

2.5 Package Outline / Mechanical data

Direc	Databook (mm.)						
Dim.	Min.	Nom.	Max.				
Α			5.33				
A1	0.38						
A2	2.92	3.30	4.95				
b	0.36	0.46	0.56				
b2	1.14	1.52	1.78				
С	0.20	0.25	0.36				
D	9.02	9.27	10.16				
E	7.62	7.87	8.26				
E1	6.10	6.35	7.11				
е		2.54					
eA		7.62					
eB			10.92				
L	2.92	3.30	3.81				
Package Weight	Gr. 470						

2.6 Traceability

2.6.1 Wafer fab information

Table 1

Wafer fab information	Wafer fab information			
VNB7	VNB7			
Wafer fab name / location	Ang Mo Kio			
Wafer diameter (inches)	6			
Die thickness (µm)	280			
Silicon process technology	VIPower M03			
Die finishing front side (passivation)	SiN (nitride)			
Die finishing back side	Ti-Ni-Au			
Die area (X,Y) (µm)	3250,2070			
Metal levels	1			
Bond Pad Material	AlSi			

2.6.2 Assembly information

Table 3

Assembly Information				
DIP8				
Assembly plant name	TFME			
Lead frame finishing (material)	DIP8 Cu Ring			
Die attach material	ABLEBOND 8200T			
Wire bonding material/diameter	Au 1.3 mils			
Molding compound material	MG46FAM			

2.6.3 Reliability information

Table 4

Reliability Information			
Reliability laboratory name / location	Agrate-Cornaredo / Italy (lot 1,2,3,7)		
Reliability laboratory fiame / location	Muar / Malaysia (lot 4,5,6.8)		

Note: ST is ISO 9001 certified. This induces certification of all internal and subcontractor labs. ST certification document can be downloaded under the following link: http://www.st.com/content/st_com/en/support/quality-and-reliability/certifications.html

RER Identification Number: RR007221CO6410 Page 9/16

3 TESTS RESULTS SUMMARY

3.1 Lot Information

Table 5

Lot #	Diffusion Lot	Die Revision (Cut)	Raw Line	Package	Note
1	V584258M	BE6	FEJG*MV61BE6	DIP7	Equivalent Test vehicle
2	V5840WY9	BG6	RFJG*MV34BG6	DIP7	Equivalent Test vehicle
3	V5819UU6	AEX	FU(E*MT19AEX	SDIP10	Equivalent Test vehicle
4	V5009H09	AC6	1UJG*MT13AC6	DIP7	Equivalent Test vehicle
5	V50121WF	BE6	1UJG*MV61BE6	DIP7	Equivalent Test vehicle
6	V5017W75	BG6	1UJG*MV34BG6	DIP7	Equivalent Test vehicle
7	KYA938	AA5	A5(E*MT13AA5	DIP7	Equivalent Test vehicle
8	9996660CK	WCA	9F8W*VNB7WCA	DIP8	

3.2 Test plan and results summary

<u>Table 6</u> – ACCELERATED LIFETIME SIMULATION TESTS

Test code	Stress method	Stress Conditions	Lots	S.S.	Total	Results/Lot Fail/S.S.	Comments: (N/A =Not Applicable)
HTOL		VCC=23V TJ=150°C Duration= 1000hrs □ After PC ☑ Testing at Room	3	45	135	Lot 1: 0 / 45 Lot 2: 0 / 45 Lot 3: 0 / 45	
HTRB		VDRAIN=640V VCC=23V TJ=150°C Duration= 1000hrs □ After PC ☑ Testing at Room	3	45	135	Lot 1: 0 / 45 Lot 2: 0 / 45 Lot 3: 0 / 45	

Note: Test method revision reference is the one active at the date of reliability trial execution.

RER Identification Number: RR007221CO6410

Table 7 – ACCELERATED ENVIRONMENT STRESS TESTS

Test code	Stress method	Stress Conditions	Lots	S.S.	Total	Results/Lot Fail/S.S.	Comments: (N/A =Not Applicable)
THB	JESD22 A101	VDRAIN=100V VCC=23V Ta=85°C, 85%RH, Duration= 1000hrs	2	40	80	Lot 1: 0 / 40 Lot 2: 0 / 40	
		□ After PC ⊠ Testing at Room	1	25	25	Lot 3: 0 / 25	
TC	JESD22-A104	Ta= Duration= 500cy	3	25	75	Lot 1: 0 / 25 Lot 2: 0 / 25	
		□ After PC ☑ Testing at Room	3	77	231	Lot 3: 0 / 25 Lot 4: 0 / 77 Lot 5: 0 / 77	
			1	77	77	Lot 6: 0 / 77 Lot8: 0 / 77	
AC	JESD22 A102	P=2.08atm Ta=121°C, Duration = 96hrs ☐ After PC ☑ Testing at Room	3	25	75	Lot 1: 0 / 25 Lot 2: 0 / 25 Lot 3: 0 / 25	
HTSL	JESD22 A103	Ta= 150°C Duration= 1000hrs □ After PC ☑ Testing at Room	3	25	75	Lot 1: 0 / 25 Lot 2: 0 / 25 Lot 3: 0 / 25	

Note: Test method revision reference is the one active at the date of reliability trial execution.

RER Identification Number: RR007221CO6410

Table 8 - ELECTRICAL VERIFICATION TESTS

Test code	Stress method	Stress Conditions	Lots	S.S.	Total	Results Fail/S.S.	Comments: (N/A =Not Applicable)
CDM	ANSI/ESD STM	CDM=+/-1500V ⊠ Testing at Room	1	3	3	Lot 7:0/3	
MM	EIA/JESD22-A115	MM=+/-200V ⊠ Testing at Room	1	3	3	Lot 7 :0 / 3	
НВМ	ANSI/ESDA/JEDEC	HBM=+/-4000V ☑ Testing at Room	1	3	3	Lot 7 :0 / 3	
ה	JESD78	Current Injection Class II - Level B (+/- 100mA) Overvoltage Class II - Level B (1,5 x Vmax) □ Testing at Room	1	6	6	Lot 7:0/6	

Note: Test method revision reference is the one active at the date of reliability trial execution.

RER Identification Number: RR007221CO6410 Page 13/16

4 APPLICABLE AND REFERENCE DOCUMENTS

Reference	Short description
AEC-Q100	Failure Mechanism Based Stress Test Qualification for Integrated Circuits in automotive applications
JESD47	Stress-Test-Driven Qualification of Integrated Circuits
DMS 0061692	Reliability Tests and Criteria for Product Qualification

RER Identification Number: RR007221CO6410 Page 14/16

5 **GLOSSARY**

List update based on applicable items.

AC	Autoclave	MR	Multiple Reflow
ACBV	AC Blocking Voltage	MS	Mechanical Shock
ASER	Accelerated Soft Error Rate	MSeq	Mechanical sequence
AST	Adhesion Shear Test	MSL	Moisture Sensitivity Level
BI	Burn-In	NVM	Non Volatile Memory
ВТЗР	Board 3 points Bending Test	PC	Preconditioning
BT4P	Board 4 points Bending Test	PD	Physical Dimensions
CA	Constant Acceleration	PTC	Power Temperature Cycling
CDM	Electrostatic Discharge - Charged Device Model	RS	Repetitive Surge Test
ConA	Construction Analysis	TSH	Resistance to Solder Heat
CVS	Constant Voltage Stress	RTSER	Real-Time Soft Error Rate
DBT	Dead Bug Test	SAM	Scanning Acoustic Microscopy
DPA	Destructive Physical Analysis	SBP	Solder Ball Pull
DROP	Package drop	SBS	Solder Ball Shear
DS	Die Shear	SC	Short Circuit Characterization
DToB	Drop Test on Board	SCCSS	Smartcard - Constant Supply Stress
EDR	NVM Program/Erase Endurance & Data Retention Stress Test	SCMCMS	Smartcard - MasterCard Mechanical Stress
ELFR	Early Life Failure Rate	SCMF	Smartcard – Magnetic Field Stress
EMC	Electromagnetic Compatibility	SCPOOS	Smartcard - Power Off/On Stress
EOS	Electrical Overstress characterization	SCRFC	Smartcard - RF On/Off Cyclic Stress
ESeq	Environmental sequence	SCRFS	Smartcard - RF On Static Stress
EV	External Visual	ScrT	Screw Test
GFF		SCSA	Smartcard – Salt Atmosphere
GFL	Gross/Fine Leak	SCUV	Smartcard - UV Test
GL	Electro-thermally Induced Gate Leakage	SCXRAY	Smartcard - XRAY Test
GStress	Gate Stress	SD	Solderability
GUN	Electrostatic Discharge – System Level Test	SSOP	Steady State Operational
H3TRB	High Humidity High Temperature Reverse Bias	SToB	Shock Test on Board
HAST	Biased HAST (Highly Accelerated Stress Test)	TC	Temperature Cycling
HBM	Electrostatic Discharge – Human Body Model	TCDT	Temperature Cycling Delamination Test
HER	Hermeticity	TCHT	Temperature Cycling Hot Test
НММ	Electrostatic Discharge – Human Metal Model	ТСоВ	Temperature Cycling on Board
HTFB	High Temperature Forward Bias	THB	Temperature Humidity Bias
HTGB	High Temperature Gate Bias	THS	Temperature Humidity Storage
НТННВ	High Temperature High Humidity Bias	TLP	Electrostatic Discharge – Transmission Line Pulse
HTOL	High Temperature Operating Life	TS	Thermal Shocks
HTRB	High Temperature Reverse Bias.	TStr	Terminal Strength
HTSL	High Temperature Storage Life	Tumb	Tumbler Test
IOL	Intermittent Operating Life	UHAST	Unbiased HAST (Highly Accelerated Stress Test)
IWV	Internal Water Vapor	VToB	Vibration Test on Board
LF	Lead Free	VFV	Variable Frequency Vibration
Ц	Lead Integrity	WAT	Tin (Sn) Whisker Acceptance Testing
LT	Lid Torque	WBI	Wire Bond Integrity
LTOL	Low Temperature Operating Life	WBP	Wire Bond Pull
LTSL	Low Temperature Storage Life	WBS	Wire Bond Shear
LU	Latch-Up	WBSt	Wire Bond Strength
ММ	Electrostatic Discharge – Machine model	XRAY	X ray inspection

CONFIDENTIALITY OBLIGATIONS

This document contains confidential information; its distribution is submitted to ST authorization.

Disclosure of this document to any non-authorized party must be previously authorized by ST only under the provision of a signed NDA between ST and Customer and must be treat as strictly confidential.

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

Information in this document is intended as support for authorized communication between ST and Customer only, for internal discussions purposes.

In no event the information disclosed by ST to Customer hereunder can be used against ST, or in a claim brought in front of any Court or Jurisdiction.

At all times you will comply with the following securities rules:

- Do not copy or reproduce all or part of this document
- Keep this document locked away
- Further copies can be provided on a "need to know basis", Please contact your local ST Sales Office or document writer

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics International NV and/or its affiliates, registered in the U.S. and other countries

© 2018 STMicroelectronics International NV and/or its affiliates – All Rights Reserved www.st.com

RER Identification Number: RR007221CO6410 Page 16/16